

GC Analysis of Sulfur Components in Propylene using a Pulsed Flame Photometric Detector

Application Note

Hydrocarbon Processing

Author

Helena Jacobse
Agilent Technologies
Herculesweg 8
4338 PL Middelburg
The Netherlands

Abstract

The Agilent J&W Select Low Sulfur column measures trace levels of target components in C3 hydrocarbon streams without any matrix interference.

Introduction

Hydrogen sulfide (H₂S), carbonyl sulfide (COS) and methyl mercaptan (CH₃SH) are common components in light hydrocarbon streams. They have corrosive and toxic properties, causing damage to pipes and equipment. The emission of undesired odors caused by volatile sulfur compounds in intermediates and final products have serious economic and environmental impact. In addition, the presence of sulfur can affect the performance of industrial processes, causing chemical reactions, loss of catalyst activity (catalyst poisoning), and ultimately lower yield.

These sulfur components must be quantified at low ppb levels. They can be measured with sulfur specific detection devices like the Pulsed Flame Photometric Detector (PFPD) but large sample volumes are needed to reach the desired low parts per billion (ppb) detection limits. This creates matrix overload and quenching effects (decreased signal/sensitivity due to background interferences) on most sulfur specific detectors, limiting the detector's sensitivity and linearity and raising quantification limits. The capillary PLOT column, Agilent J&W Select Low Sulfur column, with a novel stationary phase was developed for the analysis of sulfur species such as $\rm H_2S$, COS and $\rm CH_3SH$ in light hydrocarbon C3 matrices, with high loadability properties and unique selectivity giving baseline resolution for sulfur components and matrix components.

Experimental

Technique: GC-PFPD

Column: Agilent J&W Select Low Sulfur, 60 m × 0.32 mm

(p/n CP8575)

Oven: 65 °C isotherm

Carrier gas: Helium, constant flow, 2.0 mL/min

Injector: 200 °C, split 1:20
Detector: PFPD, 200 °C

Sample: Propylene matrix containing ~500 ppb H₂S, COS, and

CH₃SH

Injection volume: 1 mL

Injection: Gas sampling valve

Results and Discussion

The stationary phase shows good selectivity between H₂S, COS and low mercaptans in various C3 hydrocarbon matrices. Therefore, co-elution of the sulfur components and the matrix, which causes "quenching", is avoided.

The system was equipped with a gas sampling valve. The gas sampling valve event table is shown in Table 1. The detector settings are shown in Table 2.

Table 1. Gas Sampling Valve Event Table

Time (min)	Gas sampling valve
Initial	Fill
0.01	Inject
1.00	Fill

Table 2. Detector PFPD Settings

Combustion gases

Air (1)	17 mL/min
H_2	13 mL/min
Air (2)	10 mL/min
Trigger level	250 mV
Tube voltage	550 V
Sampling delay	6 ms
Sampling width	20 ms

Figure 1 shows the chromatogram of sulfur compounds $\rm H_2S$, COS, and CH $_3$ SH in a propylene matrix. Methyl mercaptan shows peak broadening from column overloading by the large amount of propylene. The propylene matrix elutes between COS and methyl mercaptan.

H₂S, COS and CH₃SH in Propylene matrix

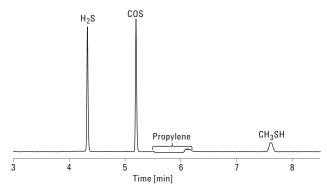


Figure 1. Chromatogram of sulfur compounds H₂S, COS and CH₃SH in a propylene matrix, using the Agilent J&W Select Low Sulfur with GC-PEPD

Conclusion

The Agilent J&W Select Low Sulfur used in a GC with a sulfur specific detector, such as a PFPD, can detect H_2S , COS and CH_3SH at trace levels in a propylene matrix as a result of excellent separation of the sulfur compounds and the matrix. Separating the matrix from the sulfur components eliminates the "quenching" effects caused by the matrix. This provides a better response for the sulfur compounds. The column provides a good response for reactive sulfur compounds, such as H_2S , which makes detections of 20 ppb possible.

Although this is a PLOT column, no spikes will be observed because this column does not shed particles. It can therefore be used safely in combination with valves.

References

- 1. W. Wardencki (1998) Review "Problems with the determination of environmental sulphur compounds by gas chromatography." J. Chromatog. A. 793: 1-19.
- Roger L. Firor and Bruce D. Quimby, "Comparison of Sulfur Selective Detectors for Low-Level Analysis in Gaseous Streams," Agilent Technologies publication 5988-2426EN.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2010 Printed in the USA December 20, 2010 5990-6990EN

